Prediction of Melting Point for Drug-like Compounds Using Principal Component-Genetic Algorithm-Artificial Neural Network
نویسندگان
چکیده
Principal component-genetic algorithm-multiparameter linear regression (PC-GA-MLR) and principal component-genetic algorithm-artificial neural network (PC-GA-ANN) models were applied for prediction of melting point for 323 drug-like compounds. A large number of theoretical descriptors were calculated for each compound. The first 234 principal components (PC’s) were found to explain more than 99.9% of variances in the original data matrix. From the pool of these PC’s, the genetic algorithm was employed for selection of the best set of extracted PC’s for PC-MLR and PC-ANN models. The models were generated using fifteen PC’s as variables. For evaluation of the predictive power of the models, melting points of 64 compounds in the prediction set were calculated. Root-mean square errors (RMSE) for PC-GA-MLR and PC-GA-ANN models are 48.18 and 12.77 oC, respectively. Comparison of the results obtained by the models reveals superiority of the PC-GA-ANN relative to the PC-GA-MLR and the recently proposed models (RMSE = 40.7 oC). The improvements are due to the fact that the melting point of the compounds demonstrates non-linear correlations with the principal components.
منابع مشابه
Improving biological activity prediction of protein kinase inhibitors using artificial neural network and partial least square methods
Introduction: Protein kinase causes many diseases, including cancer; therefore, inhibiting them plays an important role in the treatment of many diseases. Traditional discovery inhibitors of this enzyme is a time-consuming and costly process. Finding a reliable computer-aided drug discovery tools which can detect the inhibitors will reduce the cost. In this study, it is attempted to separate ki...
متن کاملCombined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملCombined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملImproving biological activity prediction of protein kinase inhibitors using artificial neural network and partial least square methods
Introduction: Protein kinase causes many diseases, including cancer; therefore, inhibiting them plays an important role in the treatment of many diseases. Traditional discovery inhibitors of this enzyme is a time-consuming and costly process. Finding a reliable computer-aided drug discovery tools which can detect the inhibitors will reduce the cost. In this study, it is attempted to separate ki...
متن کاملPrediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence
Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....
متن کامل